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Abstract

We present a method of reconstructing the region of origin and trajectories for particles given impact directions
and positions. This method works for nonlinear trajectories, such as parabolic motion or motion with drag if
given drag parameters. Our method works if given the impact speeds as well, or they can be estimated using a
similar total initial energy prior. We apply our algorithm to the case of forensic blood pattern reconstruction, by
automatically estimating impact velocities directly form the blood patterns. We validate our method in physically
accurate simulated experiments, a feasibility study varying the impact angle and speed to estimate the impact
speed from blood drop densities, as well as a forensic experiment using blood to reconstruct the region of origin.

Categories and Subject Descriptors (according to ACM CCS): 1.5.4 [Pattern Recognition]: Applications—Computer

Vision

1. Introduction

Consider a system of particles emitted from a common point,
called a region of origin. The particles, without interfering
with each other, undergo ballistic motion until they collide
with a rigid object in the environment. A problem of interest
is then to be able to reconstruct this region of origin, with
only knowing the parameters of the particles as they impact
surfaces. Such a problem is useful if we are interested in an
event that took place in the past and could not observe it, but
would like to know where it occurred based on observations
we discern from the impact sites.

A prime example for this type of problem occurs in a
branch of forensic science, called blood pattern analysis
(BPA), which analyzes the patterns formed by blood parti-
cles eject from a wound. The impacts of blood droplets on
surfaces leaves elliptical stains from which parameters such
as direction and velocity of impact can be estimated. The re-
construction of the region of origin from these stains is called
blood pattern reconstruction.

Traditional techniques for this problem involve identify-
ing the direction of impact and extending that direction us-
ing physical strings or software. The region of origin is as-
sumed to lie at the intersection of the flight paths. For this
method to work, all particles must have a high enough veloc-
ity for the trajectories to approximate lines. For high veloc-
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ity events such as exit spatter caused by a firearm, this works
well, but for medium and low velocity events, droplets do
not generally travel in straight lines and are influenced by
both gravity and drag. It is generally known that the true re-
gion of origin will be lower than the intersection of these
tangent lines. However, where exactly it may lie cannot be
determined with the linear approach.

In this paper, we instead introduce a non-linear, prob-
abilistic approach to solve the inverse dynamics problem
posed by region of origin estimation. We begin by discussing
previous work in Section 2, then examine the trajectory
equation for a particle in Section 3. We then show how to use
this equation to obtain a probability density function (PDF)
over the space. We use the PDF from all impact sites to show
the common likely region of the trajectories, which we as-
sume to be the region of origin. In Section 4, we turn to the
specific problem of BPA, and discuss how to obtain all the
required parameters for our probabilistic inverse dynamics
from photographs of blood patterns. In Section 5, we vali-
date our method with experiments from real world data and
test scenes.
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2. Previous Work

In this section, we will discuss various related work in in-
verse dynamics in Section 2.1, traditional BPA methods in
Section 2.2, and existing automated methods in Section 2.3.

2.1. Inverse Dynamics

Inverse dynamics is a problem with ongoing research mainly
in robotics and locomotion. The joint torques of an articu-
lated character are solved for, given a final state of the char-
acter in order to move the character from one pose to another
as described in Featherstone’s book [Fea87]. This problem
differs from our setting in that we consider particles that
are independent, and so we desire finding the forces and not
torques. Other software such as BulletFlight [Arm] deter-
mines the ballistic path given a target. This software takes
into account many different parameters such as humidity,
temperature, bullet model, and others in order for a sniper
to hit their target from large distances.

2.2. Traditional Blood Pattern Analysis

An introductory resource for BPA is Blood Dynamics by A.
Wonder [WonO1]. This book describes how to deduce ac-
curate facts involving blood from a crime scene, as well as
the basic linear reconstruction techniques. An updated book
on the matter [BG0O8] covers more modern techniques in-
cluding virtual stringing with software. Good supplements
to this work are [EJ89] and [Won07], which focus more on
case studies from various scenes.

Various BPA tools are presented in [BGO8] using
flowchart diagrams to deduce the order of events. Also pre-
sented are techniques for BPA reconstruction such as the tan-
gent method which uses information from elliptical blood-
stains. To perform this method, strings are run along the im-
pact direction from each droplet’s impact ellipse. One angle
of the direction is given by the major axis angle in the plane
it is on, while the other impact angle 0 is determined by the
ratio of the major axis length and width (L and W respec-
tively) by the equation,

sin(6) — % (1)

Another study related to traditional BPA is [Rog(09] where
the linear method was shown to be as accurate while varying
white to red blood cell ratio (hematocrit values) in test stains.

2.3. Automatic Blood Pattern Analysis

The most commercial software in use is BackTrack [Car].
A user inputs bloodstain ellipses and positions in 3D. The
program then computes a linear estimate of where the re-
gion of origin is. This software only works for axis aligned
surfaces. Evaluations of this program have been done, com-
paring it to the stringing method [CFEH*06] and conclud-
ing that it is a reasonably accurate method for most results.

When gravity is a key factor in the trajectories, a different
evaluation [ICLYO05] concludes the height coordinate has to
be approached with caution as an upper bound for the region
of origin.

Shen [SBCO06] describe an outline of various computer
vision techniques as applied to BPA. They claim to obtain
the region of origin, though no error results are provided
for the fully reconstructed result. There is also a more re-
cent paper [BKA10] describing an ellipse fitting technique
specifically designed for blood droplet analysis. They obtain
approximately 10% error in direction, testing on 30 stains.
Another automatic approach fits homographies from copla-
nar ellipses from one image to another to infer information
about the scene [WWRMO6]. Their reconstructed results as
applied to BPA were shown with errors of 35 and 67 inches.
This is a significant error, as stated in [CFEH*06], they say
10-20cm (or 4-8 inches) is accurate enough to allow a proper
interpretation of the crime.

There have been portable technologies to scan a crime
scene more accurately as well, such as the DeltaSphere
3000 [Del], which obtains a dense model of the scene using
a laser range scanner. It also captures color at the sampled
points. There has also been a case study investigating the
usefulness of virtual crime scene environments [MGH*98].
It concludes that creation of an interactive virtual environ-
ment of a crime scene to be very useful and of significant
importance to many different related fields.

3. Region of Origin Reconstruction

In Section 3.1, we will discuss the trajectory equations, and
how to use them to reconstruct the trajectory prior to an im-
pact. Section 3.2 shows how to obtain a 2D PDF assuming
we know all the parameters needed in the trajectory equa-
tions. We go on to show how to reconstruct the region of
origin for the 2D case in Section 3.3. Lastly, we show in
Section 3.4 how to obtain the 3D region of origin estimate
given the 2D PDFs.

3.1. Inverse Dynamics

We assume a spherical particle that travels under the in-
fluence of gravity and drag only. From a physics text-
book [HRKO1], the trajectory for this motion is given by

ke

m _k
cm(t):voot—i-?(vo—voo)(l—e m)+x9. (2
where m is the mass of the particle, k is the drag coefficient,
t is time, Xg and v is the position and velocity respectively
at some time ¢ = 0. We call this the main reconstruction path
equation. The terminal velocity voo is given by
m
Voo = 22, 3)
where g is the gravity vector with final component —g, 0
elsewhere and g = 9.81 % is the gravity constant.
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We can fix this curve if we know the particle’s mass m,
drag coefficient k, impact velocity vy and position xg if we
consider the time of impact to be ¢ = 0. In this section we
assume we know these parameters for each impact site. We
show how to obtain them for blood specifically in Section 4,
however this reconstruction method can work on any such
system.

To reconstruct the trajectory prior to impact, we simply
compute ¢, () for ¢ < 0. Note that the equation becomes un-
stable when the impact velocity is the terminal velocity. In-
tuitively, when a particle travels at terminal velocity it travels
in a straight line. We cannot know how long it has been do-
ing so as all the variables will be the same at the beginning
and end of this line.

3.2. 2D PDF Formulation

If we reconstruct the region of origin for the reconstructed
paths as in Section 3.1, we could find the least squared dis-
tance between all the curves. However, measurements may
be noisy and a least squared estimate may greatly affect the
reconstruction for the region of origin. In particular the re-
construction is very sensitive in reconstruction of the angle
of impact. We choose a probabilistic formulation to encode
the error in impact velocity, which is composed of the impact
angle 0 and speed vg. Let us assume we are in 2D space with
x as the first and z as the second component of each vector.
We write the velocity as

vo = vp(cos(8),sin(0)). 4)

If we have a small positive or negative perturbation in the
impact speed component 8, and impact angle &g, we can
write this perturbed velocity as

Vp(8g,0v) = (vo+ 8y)(cos(6+Jg),sin(6+ dg)). 5)

To reconstruct a perturbed path ¢, (¢) with this altered im-
pact velocity vp, we can substitute it in for vo in Equation 2.

If we want to know at the same point in time r how these
two paths relate to each other, we can look at a perturbation
vector for the paths p(¢) which we define as

p(t) = cp(t) —cm(t). ©)

We can analyze what happens to this perturbation vector
over time by substituting the path equations into Equation 6,

m kt
= (

p(t,89,0y) = . L—e m)(vp(8g,0v) — Vo). (1)

The time dependent component 7 (1 — eié?l) scales ex-
ponentially as we vary time in the negative direction. This
means we are more uncertain of where the event occurred in
space, the further in time before the event. The difference of
the velocities is a circular warp from the space & = (5,,dg)
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Figure 1: An example PDF for a particle over xz space.

to x = (x,z). Suppose the distribution of values in 3-space is
a zero mean 2D Gaussian distribution with standard devia-
tions Gy and Gg in each component respectively, then we can
map that distribution to xz coordinates space using v, — vo.

Since the perturbation values are relatively small, the warp
is not pronounced and we can approximate the warped Gaus-
sian in xz space by a uniform 2D Gaussian with mean pg(7)
and standard deviation in each x and z axis as (). We
know the mean of this distribution is where the perturba-
tion is zero, which corresponds to the main reconstruction
path ¢, (7). We can thus say that ug () = cm(f). As for the
standard deviation, we decide to choose to warp the the pos-
itive and negative of the basis vectors in 3-space, and choose
the one with maximal distance from the main reconstruction
path

o6(1) = Ip(t, po. py)Il. ()

max
(po,pv)€{—00,00} X {—0v,0:}
This gets us a distribution for the probability of a point at
a given point in time before the event. If we are interested
in the probability of where a point has been over all times,
we integrate over those times to obtain the PDF for a single
particle,

P = [ Nl oc)d,  ©)

t€[to—1E o]

where tg is how far back in time we are interested in, and
N is the uniform 2D normal distribution with mean ug and
standard deviation 6. This forms a PDF which denotes the
probability of a particle being at a given point in space in
some known time interval. An example of this PDF for a
given impact site is seen in Figure 1. Note that we are more
certain where it is closer to the impact site.
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3.3. Region of Origin PDF Formulation

In the previous section we have created a probabilistic model
of where a particle may have been for all times prior to im-
pact in a given space. The highest probability is near the
measured point. However, we wish to find the region of ori-
gin, or where it is likely to be for all points. We assume
that all particles are independent observations from the same
source, and therefore multiply all the values together for all
particles.

Suppose we have a 2D probability density function for
each impact particle denoted P; for the i impact site. The
input to these PDFs are known estimates for the position
x; and velocity v; at the time of impact. To obtain the re-
gion of origin PDF, denoted Pgpp, we multiply all the P; to
find a common likely region all the particles will have been
through,

Proo =[] P:- (10)
i

We now show how to estimate the region of origin with-
out knowledge of the velocities by imposing a similar initial
total energy prior. We assume at the time of separation, sim-
ilar kinetic energy, K, was added to all particles and since
they also have the same potential energy, U, the total energy,
T, for each particle is constant. To approximate the speed of
a particle, s;, given its mass m; and height, A;, relative to the
lowest particle with height defined as 0 and speed sg, we can
use the equation,

T=K+U-= %m0s02+0 = %misiz +mighi. (1)

If we don’t have knowledge of the masses, we can impose a
similar mass constraint as well, obtaining

s02 = s,~2+2gh,', (12)
which can be solved for the speed of each particle s; in terms
of sq.

Suppose the approximate speed for the lowest particle is
in an interval S = [sgart,Seng]- Then we construct a PDF by
integrating over all different speeds,

Py = / Proo(so)ds. (13)
SoES
The region of origin should lie where this new density func-

tion P, is maximal, otherwise known as the maximum like-
lihood estimate (MLE).

3.4. 3D Region of Origin PDF

So far all of the PDFs have been for the 2D case. If we want
to determine this probability distribution in 3D, we can mul-
tiply the values of the two perpendicular planes at different
voxel values, then solve for the MLE in this 3D space. We
define the PDF on the xz plane as

Txz :PV(X?C)Z7V{)Z)7 (14)

Figure 2: An example segmentation of the different con-
nected bloodstains labeled by color

where x;° and vy are the x and z components of the impact
positions and velocities respectively. Similarly the yz PDF
defined as

Tye = Po(X), V), (15)

for the y and z components. Then we can write the 3D PDF
as

P3D(x7y,z) :nXZ(x7Z)ny2(yaZ)~ (16)

The assumed solution to the region of origin is most likely
region that all particles have passed through at some point
in time. This solution is defined as a maximum likelihood
estimate solving for x4, and is written as

X4 = (XA,Ya,24) = arg max P3p(x,y,z). a7
XVZ

4. Bloodstain Parameter Estimation

In this section, we will describe how to obtain the parameters
for the trajectory Equation 2 needed to compute the recon-
struction. These were previously described in Section 3.1 as
vo, 0, Xg, k and m. We show how to estimate an elliptical fit
accurately by pruning a stain of the mask in Section 4.1. We
then proceed to describe how to obtain the drag coefficient k
and mass m of the blood droplet in Section 4.3. Finally we
show how one may obtain the impact speed vy from pho-
tographs of the stains in Section 4.4.

4.1. Ellipse Pruning

Previous work has shown how to mask stains according to
blood color [BKA10], so we will assume we are given a
boolean mask of the bloodstains with value true if it is a stain
and false otherwise. To process one stain at a time we per-
form connected components and examine each contiguous
stain one at a time. The connected components for a mask
can be seen in Figure 2.

(© The Eurographics Association 2011.
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Let us consider the mask M for one bloodstain. We per-
form a distance transform on this mask to find the region
with largest inscribed circle (which is assumed to be inside
the ellipse region). We now consider all pixels that are visi-
ble to this circle, the ones that are not visible get set to false,
creating a visibility mask. This is performed by casting rays
from points on the circle and the ones that leave the mask
are not visible.

This utilizes a definition for convex regions, that all points
in a convex region must be visible to all other points in the
same region. The pixels in this visibility mask that corre-
spond to edges in the original mask should be part of the
main ellipse as they were visible to a large portion of the con-
vex region. We then perform a standard ellipse fitting algo-
rithm [FPF99] on the convex hull of these edge points. More
appropriately, one could use an ellipse fitting algorithm spe-
cific to bloodstains such as in [BKA10], however the direct
fitting performed remarkably well.

As discussed earlier, the ellipse gets us impact position X
and impact angle 6.

4.2. Major Axis Direction Flipping

Although we have determined the ellipse fit for impact, the
impact angle is still ambiguous in either direction along the
major axis. From the trajectory equation 2, we know the par-
ticles must travel straight along the horizontal xy plane. We
therefore project these two directions per stain onto the xy
plane. We now have two sets of lines in the xy plane. The
two sets of lines will converge in two distinct points. We can
solve for two different points of intersection by clustering.

In Figure 3, one of the points will be in front of the wall,
and another virtual one is behind as the two directions will
be reflections about the plane normal in the xy plane. We will
choose the point in front of the wall, and axis direction as-
sociated with that point for each ellipse. For a more general
plane, the point that is closer to the plane will be the correct
one.

Without resolving this ambiguity, the height component
may diverge in the direction of the region of origin. This is
more extreme in the case of particles with parabolic trajec-

tory.

4.3. Mass and Drag Coefficient Estimation

With a confident ellipse, we can obtain the impact angle 0,
X0, k and m from it. We fit a stain with ellipse with with mi-
nor axis radius r. We can estimate the volume of the droplet
from the equation for the volume of a sphere as

4 3
V=_mnr. 18
3 (18)
We can use the volume to obtain the mass m of the droplet,
m=pgY, 19

(© The Eurographics Association 2011.

Figure 3: Axis flipping. The top left image is an example
of input angles, the bottom image is considering all reflec-
tions of angles, the top right image corresponds to angles
that meet on the correct side of the wall.

where pp is the density of the given blood. Finally, the drag
coefficient is defined as

k = 6mur, (20)

where u is the dynamic viscosity for air (1.78 - 1073 ;%)-

4.4. Estimating the Speed of Impact

If we would like to obtain the impact speed of a droplet, it
is beneficial to define a density estimation for the droplet
in image space, denoted p;. This is formally defined as the
thickness of a blood droplet at a given pixel. We can obtain
this information from the Beer-Lambert law. This law states
that for an incoming ray with intensity I that passes through
a medium with absorption coefficient o, and thickness / and
outgoing ray /i, then

h —ol

- = . 21

¢ 2n
We assume the background is of uniform intensity. If we
know the input intensity Iy from the background and out-
put intensity /; from the measured value on a blood droplet
then, we can define the image density p; = % as the light

passes through the drop twice. Rearranging, we then obtain
1 I

fﬁln(lo). (22)

pi=

We claim the image density p; is a function of both the
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impact angle and impact speed. We know that there exists a
maximum density of a droplet of a given size pmax, Which
corresponds to a perfect hemisphere on the surface. This oc-
curs when the angle and speed of impact are both 0.

We know that as the speed increases, the density decreases
as we’re spreading the droplet over a larger area. As the
speed approaches infinity, the density approaches zero. Sim-
ilarly for the impact angle, as it approaches %, the stain will
smear over an infinite distance and thus the density becomes
zero. We can thus form p; as follows that satisfy both these
constraints,

Pi(0,0) = Pmax cos(8)e . (23)
Since this is invertible, we can rearrange and solve for vy,

and denote this as the velocity estimation equation,

1 max cos(0
vo(8,pi) = Xln(ppin)

where the value A and puqx can be found through experiment
(see next section and Figure 7).

; 24

5. Experimental Validation

In this section we show three experiments confirming our
findings. Section 5.1 shows syntehtic experiments gauging
the accuracy of our region of origin estimation, Section 5.2
shows how our velocity estimation Equation 24 is a plau-
sible model for data obtained by dropping blood at various
speeds. Section 5.3 shows our full reconstruction technique
for a horizontal scene.

5.1. Dynamics Simulations

We have tested the inverse dynamics aspect of our algo-
rithm by simulating projectile motion for many particles
from the same region of origin. The particles had random
initial speeds and directions as well as termination time to
simulate different impact positions in space. We reconstruct
the the region of origin using our algorithm and compare
with the traditional linear tangent method. For our method
and the tangent method we run 100 trials per sample point
and average the error. For our method without known veloc-
ities we run only 10 trials, as it takes much longer.

In Figure 4, we introduce error in the angle, Gg, and keep
the error in the speed, G, constant. In Figure 5 we introduce
error in the speed. Note that it isn’t appropriate to graph our
method without speed in this case as we do not use it.

These trials may also be misleading in terms of useful-
ness. Although our algorithm becomes less accurate when
increasing the error past a certain threshold, it also informs
us how likely our estimate is, something the traditional
method does not. Consider Figure 6. The PDF on the left
is for one of the trials with low error in impact angles and
velocities, whereas the PDF on the right is for one with high
error in angle. The left one shows us it could have come from
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one particular region whereas the one on the right shows
many different regions, where the maximum likelihood esti-
mate is not as useful.

5.2. Velocity Estimation Experiment

In this experiment, we dropped blood from an pipette at var-
ious heights to simulate various impact speeds. We did this
for 5 different heights at 4 different angles. The results are
shown in Figure 7. Cow blood was used in this and all of our
other experiments.

If we examine the plot of density as a function of im-
pact angle and speed, we can see that our model previously
described fits the data appropriately. We compare it to the
theoretical plot in Figure 8 for the same boundaries with
value pmax = 0.7598 and A = 0.1835 with a residual norm
of 0.0850.

(© The Eurographics Association 2011.
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Figure 6: A PDF comparison between something with vary-
ing impact angle error 69 = ldeg and 6o = 45deg

Increasing Impact Speed
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Figure 7: Photos of stains, varying the speed and angle of
impact.

Increasing Impact Angle

5.3. Reconstruction Experiment

The second experiment was designed to compare our region
estimate against a ground truth. We hit a small puddle of cow
blood with a hammer, varying the height of the puddle in
each test. We ran our algorithm on the captured stain pattern.

In Table 1 we can see that the planar xy error for our
method is comparable with the linear method, however we
see a definite improvement in the height error z. Note that the
z component error for the linear method may vary greatly de-
pending on the configuration of the stains, whereas the prob-
abilistic method remains at constant error.

Height | Error Type | Linear | Our Method
1.25 Xxyz 3.3768 1.1165
1.25 Xy 0.5116 0.5789
1.25 Z 3.3378 0.9547

5 xyz 4.9281 1.2866
5 Xy 0.9619 1.2567
5 z 4.8333 0.2756
7.25 Xxyz 4.5954 2.3687
7.25 Xy 2.2929 1.6903
7.25 z 3.9826 1.6594

Table 1: Errors for various heights for Euclidean error xyz,
planar xy and height z. All units are in inches.

(© The Eurographics Association 2011.

Figure 8: Comparison of theoretical (left) and experimental
(right) data for varying the speed and angle of impact versus
density of impact stains.

We also claim the error of our method is bounded by the
accuracy of the xy error for the linear method. If this error
is large, then it follows that we cannot perform an accurate
reconstruction with the probabilistic method. This has been
confirmed in other experiments where an xy estimate could
not be obtained due to noise, and having a small test area
relative to the region of origin position.

In Figure 9, we plot the region of origin and reconstructed
flight paths. The paths in the 3d plots were estimated by
parabolas. They were constructed using the estimated region
of origin point, ellipse position and fixing the angle of im-
pact, fixing all parameters of each parabola. This is why the
linear method appears to be curved for some paths.

6. Conclusion and Future Work
6.1. Discussion and Limitations

We have described a method of reconstructing the region of
origin for nonlinear trajectories, whereas no previous works
have done so. It works with the same input data as in exist-
ing methods, the stain angles and positions in 3D space. We
have also described a method to robustly calculate the im-
pact angle given the image of a blood droplet, regardless of
satellite stains. Furthermore, we have described a model to
estimate blood droplet impact velocities.

The speed estimation is dependent on a given stain hav-
ing all the blood from the associated particle contained in
it. Essentially we have a volume constraint in the stain. This
is not true, since some droplets may impact at an oblique
grazing angle to the surface and rebound off further down in
separate stains. It may also occur that the speed of a particle
may be so high that it splashes into other nearby stains. If
we do not use the speed estimation, we use a similar speed
of impact prior, which is also a falsifiable assumption with
extreme cases.

We also approximate a circular warp of a Gaussian with
a uniform Gaussian for the particle probability equation 9
which may lead to innacurate results.

Another limitation is as with many computer vision ap-
proaches, there are a few parameters to tune. For the re-
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Figure 9: Reconstruction results using the linear method in
black, our method in blue and the ground truth in red.

construction, we have to tune the 8g and 8, values. For the
stain segmentation, manual thresholds were used to mask the
stains, even on a white background.

6.2. Future Work

More controlled tests are needed to accurately estimate im-
pact speed based on stain density and angle, as described
in Section 4.4. Also, more thorough validation of the whole
method would also be necessary before using the presented
algorithm in the field. In addition to accurately estimating
the velocities, we could also learn 8¢ and &, which are the
standard deviation in the angle and speed estimates by com-
paring it with ground truth data.

Right now, we have only tested on planar data to ease with
calibration, although with a more rigorous capture setup it
could be possible to acquire a 3d textured model of a scene.

To estimate the blood droplet angles from arbitrary surfaces
would be very beneficial. Also, we have assumed one splat-
ter event coming from a point source. If there were multiple
events in the scene, or a blood trail, a new approach would
be needed.
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